Free-Form-Fabricated Commercially Pure Ti and Ti6Al4V Porous Scaffolds Support the Growth of Human Embryonic Stem Cell-Derived Mesodermal Progenitors

نویسندگان

  • G. M. de Peppo
  • A. Palmquist
  • P. Borchardt
  • M. Lennerås
  • J. Hyllner
  • A. Snis
  • J. Lausmaa
  • P. Thomsen
  • C. Karlsson
چکیده

Commercially-pure titanium (cp-Ti) and the titanium-aluminum-vanadium alloy (Ti6Al4V) are widely used as reconstructive implants for skeletal engineering applications, due to their good mechanical properties, biocompatibility and ability to integrate with the surrounding bone. Electron beam melting technology (EBM) allows the fabrication of customized implants with tailored mechanical properties and high potential in the clinical practice. In order to augment the interaction with the biological tissue, stem cells have recently been combined with metallic scaffolds for skeletal engineering applications. We previously demonstrated that human embryonic stem cell-derived mesodermal progenitors (hES-MPs) hold a great potential to provide a homogeneous and unlimited supply of cells for bone engineering applications. This study demonstrates the effect of EBM-fabricated cp-Ti and Ti6Al4V porous scaffolds on hES-MPs behavior, in terms of cell attachment, growth and osteogenic differentiation. Displaying different chemical composition but similar surface properties, EBM-fabricated cp-Ti and Ti6Al4V scaffolds supported cell attachment and growth, and did not seem to alter the expression of genes involved in osteogenic differentiation and affect the alkaline phosphatase activity. In conclusion, interfacing hES-MPs to EBM-fabricated scaffolds may represent an interesting strategy for design of third-generation biomaterials, with the potential to promote implant integration in clinical conditions characterized by poor bone quality.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Proliferation Study of hiPS Cell-Derived Neuronal Progenitors on Poly-Caprolactone Scaffold

Introduction: The native inability of nervous system to regenerate, encourage researchers to consider neural tissue engineering as a potential treatment for spinal cord injuries. Considering the suitable characteristics of induced pluripotent stem cells (iPSCs) for tissue regeneration applications, in this study we investigated the adhesion, viability and proliferation of neural progenitors (de...

متن کامل

Investigation of Differentiated Embryonic Stem Cells Growth on Optimized Porous Polymeric Bed with Fuzzy System

Introduction: Age-related macular degeneration (AMD) is one of the retina diseases in which retinal pigment epithelium cells are degraded and lead to blindness. Available treatments only slow down the progression of it. In this study, human embryonic stem cells (hESCs) differentiated into retinal pigment epithelium cells were cultured on a polycaprolactone scaffold. Methods: The optimization o...

متن کامل

The Viability of Human Testis-Derived Cells on Human Serum Albumin-Based Scaffold as An Artificial Male Germ Cell Niche

Azoospermia is one of the challenging disorders affecting couples who are afflicted with infertility. Human testisderivedcells (hTCs) are suitable candidates for the initiation of in-vitro spermatogenesis for these types of patients.The current study aimed to assess the proliferation of hTCs through the cell culture on the three-dimensional (3D) porousscaffolds. Cells harveste...

متن کامل

Genetically Engineered Mouse Embryonic Stem Cell – derived Cardiomyocytes as a Suitable Model on Drugs Toxicity In vitro

Background DOX is a powerful chemotherapeutic agent used in the treatment of solid tumors and malignant hematological diseases. However, its cardiac toxicity limits the clinical usefulness of this drug. Previous reports have shown Corticosteroids induce a cytoprotective effect on cardiomyocytes. Mouse transgenic embryonic stem cell-derived pure cardiomyocytes may be considered as a model for a...

متن کامل

Fingolimod Enhances Oligodendrocyte Differentiation of Transplanted Human Induced Pluripotent Stem Cell-Derived Neural Progenitors

Multiple sclerosis (MS) is an autoimmune disease which affects myelin in the central nervous system (CNS) and leads to serious disability. Currently available treatments for MS mainly suppress the immune system. Regenerative medicine-based approaches attempt to increase myelin repair by targeting endogenous progenitors or transplanting stem cells or their derivatives. Fingolimod exerts anti-inf...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 2012  شماره 

صفحات  -

تاریخ انتشار 2012